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Abstract

A novel MEMS-based probe is described which is capable of measuring
unsteady flow angles, total pressure and velocity. Uniquely, this probe uses
shear stress sensors to relate the surface streamline directions on the
probe face to the freestream flow angles. The probe has the potential to be
miniaturised to around 1 mm in diameter and achieve a temporal resolution
of up to several 100 kHz. A computational study of virtual calibrations is
used to understand how to adjust the probe geometry and sensor locations
to maximise the sensitivity and range of the device. The most promising
configuration was calibrated experimentally using a large-scale probe to
demonstrate the feasibility of the concept.

Introduction

The measurement of aerodynamic loss largely relies on steady, pneumatic
multi-port probes. Such probes can be miniaturised to achieve high spatial
resolution and are relatively simple to construct and operate. However,
many fluid flows are inherently unsteady, particularly in turbomachinery,
which can lead to bias errors in these steady measurements.
Unsteady flow measurements are relatively commonplace, including

velocimetry techniques such as hot-wires, Laser-Doppler-Anemometry
and Particle-Imaging-Velocimetry. However, the quantification of aero-
dynamic loss requires the resolution of stagnation pressure as well as vel-
ocity. This requirement can be achieved by the use of fast-response
pneumatic probes. For example, Figure 1 shows a 6-sensor probe from
Kulite Inc, which can achieve a frequency response up to 200–380 kHz
(Ned et al., 2013). However, the diameter of this probe is over 6 mm,
which severely limits the spatial measurement accuracy; the typical width
of compressor or turbine wakes in experimental rigs is of the order
2 mm (Grimshaw and Taylor (2016)). Other probe examples include
the 4 mm diameter, 4-hole probe described by Chasoglou et al. (2018).
Smaller unsteady probes have been constructed with a reduced number

of sensors, such as the single-sensor Fast-Response-Aerodynamic-Probes
(FRAP) studied by a number of authors, e.g. Lenherr et al. (2011). These
devices cannot measure instantaneous flow angles but multiple traverses
can be used to reconstruct a steady or ensemble-averaged flow field, a
technique demonstrated by Pfau et al. (2002).
The advent of Micro-Electrical-Mechanical-Systems (MEMS) has the

potential to offer smaller sensors and reduce the size of unsteady probes.
Rediniotis and Johansen (1998) examined a 5-hole MEMS probe with a
diameter of approximately 1 mm, shown in cross-section in Figure 2.
This probe includes a semi-spherical cap that is placed over a silicon
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chip with pressure sensors and was capable of a maximum frequency response of around 400 Hz. One of the
major difficulties in constructing this probe was the fitting of the cap on top of the chip.
This paper considers an alternative approach to aerodynamic measurements that exploits MEMS directional

shear stress sensors. An example is shown in Figure 3 (Evans et al., 2012) where two hot-film elements have
been orientated at 90 degrees to each other. The directional sensitivity of this set-up is limited to around ±45°
because the hot-films cannot distinguish between forward and reversed flow (though an additional sensor could
extend the range to ±90°). Due to the low thermal mass and low conduction losses to the mounting membrane,
this type of sensor can be designed to have a frequency response of up to 1 MHz (e.g. Haneef et al., 2007).
Another example of a directional sensor is shown in Figure 4, from De Luca et al. (2015b). Power is provided

to a micro-heater at the centre of the membrane. The temperature distribution across the membrane surface is
asymmetric due to the local shear force and direction, which can be measured by comparing the voltages across
the thermopiles incorporated into the membrane. These sensors have the advantage of sensing flow angles across
a full 360 degree range but have lower frequency response than the designs in Figure 3.
The probe concept studied in this paper uses directional shear stress sensors and pressure sensors, all of which

could be incorporated onto a single MEMS chip (e.g. Mansoor et al., 2016). The design avoids the need for a
cap over the sensor chip and has the potential to achieve high temporal and spatial resolution in a relatively
simple package. The following sections of the paper describe:

1. The basic concept and principles of operation;
2. A computational study of the design sensitivities and trade-offs;
3. An experimental demonstration of the probe concept.

Figure 1. Unsteady Kulite probe, Ned et al. (2013). Figure 2. The 5-hole MEMS probe studied by Rediniotis

and Johansen (1998).

Figure 3. Directional Shear Stress Sensor tested by

Evans et al. (2012); two hot-film elements mounted on

thin membranes.

Figure 4. Directional MEMS shear stress sensor incorp-

orating microheater and thermopiles (TP) on a thin

membrane; De Luca et al. (2015b).
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Principles of operation

Figure 5 shows a schematic of the novel probe concept. The design exploits recent progress in MEMS technology,
in particular the development of multi-sensor chips (e.g. Mansoor et al., 2014). The head of the probe consists of
a cylinder with an angled face, upon which a single MEMS chip containing several sensors is mounted. The
leading edge (LE) of the angled face is radiused to minimise flow separation at incidence. Thanks to the single
chip, this relatively simple set-up has the potential to be miniaturized to achieve a stem diameter of around 1 mm.

Flow angle sensitivity

Two shear stress sensors are located towards the top and bottom of the MEMS chip (Figure 5). Rather than con-
sidering the absolute levels of shear stress, these sensors are used to measure the local direction of the near-surface
flow. This local direction depends on the freestream flow angles, which determines the position of the stagnation
point on the probe face and the streamline pattern over the face. In the absence of separations, this flow pattern
is determined by the inviscid stagnation flow and therefore has minimal Reynolds number dependency.
The sensitivity of the probe to yaw angle is illustrated schematically in Figure 6. The yaw angle is defined in

the vertical plane relative to the probe. For zero incidence the stagnation point is close to the leading edge of the
probe, and the two sensors give symmetric angles. An increase in yaw angle ϕyaw causes the stagnation point to
move towards the bottom of the probe and the two measured angles to both increase. This behaviour is evident
in the bottom two plots in Figure 8, which show computed streamlines on the probe face. A negative yaw angle
produces exactly the opposite effect due to the symmetry of the probe geometry. Thus, the average of the sensor
angles is sensitive to the yaw angle.
Figure 7 illustrates the response of the probe to variations in pitch angle, which is here defined in the horizon-

tal plane relative to the probe. A positive pitch angle causes the stagnation point to move further aft on the probe
face (Figure 8), increasing the difference between the angles measured by the two sensors. In contrast, a negative
pitch angle causes the stagnation point to move towards the leading edge, causing the measured flow angles to
become more parallel. Thus, the difference between the sensor angles is sensitive to the pitch angle.
At extreme negative pitch angles, the stagnation point moves onto the side face of the probe (to the left of the

leading edge in Figure 7) and produces a leading edge separation. This behaviour limits the negative pitch range
of the probe but can in part be mitigated by applying a radius to the leading edge.

Figure 5. Schematic lay-out of the novel MEMS probe; baseline probe.

Figure 6. Sensitivity to yaw angle (ϕyaw). Figure 7. Sensitivity to pitch angle (ϕpitch).
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Pressure and temperature

Stagnation and dynamic pressure can be measured via the two pressure transducers flush-mounted on the
MEMS chip: the foremost one reading a value closer to stagnation pressure and the rear one closer to static
(Figure 5). Javed et al. (2019) reviews the principles and application of such MEMS pressure sensors, which are
typically one to two orders of magnitude smaller than traditional transducers. Like all transducers, these sensors
are sensitive to temperature. Compensation would be provided by on-chip temperature measurements as
described by the review of Mansoor et al., 2015. Thus, when suitably-calibrated, the final probe should also be
capable of measuring stagnation and static temperature and pressure.

Frequency response

Though not addressed directly in this paper, it is useful to consider the likely frequency response of the concept
probe. The MEMS sensors shown in Figure 3 can be designed to have a frequency response significantly greater
than 100 kHz, and as high as 1 MHz (Haneef et al., 2007). Overall, the frequency response of the probe is
more likely to be limited by the fluidic time constant governing the response of the surface streamlines to
changes in the freestream flow.
A simple estimate of the fluidic time constant t for an aerodynamic probe can be made by considering a

reduced frequency based on the probe diameter and flow velocity:

fr ¼ f d
V

(1)

A reduced frequency below ∼0.3 is typically required for quasi-steady flow. Thus the likely maximum fre-
quency response of the probe may be estimated as:

f ¼ 1
t
� 0:3V

d
(2)

Equation 2 demonstrates that miniaturisation is necessary to achieve a high frequency fluidic response. For
example, a 1 mm diameter probe with a flow velocity of 100 m/s will have a fluidic frequency response of
around 30 kHz, broadly similar to a hot-wire. In contrast the 6 mm probe in Figure 1 would achieve only
around 5 kHz at the same conditions. Thus, the miniaturisation promised by the novel probe described in this
paper has the potential to offer a step-change in temporal accuracy.

Computational design study

A design study was performed using Computational Fluid Dynamics (CFD) to understand how the probe geom-
etry and sensor layout should be designed to maximise sensitivity and useable range. Particular attention is paid
to the angle sensitivity since the mechanism exploited by the probe is very unlike any existing device.
For this initial study the inlet Mach number and the Reynolds number were held constant at 0.25 and 3010

respectively. This Reynolds number corresponds to a probe diameter of 2 mm at standard atmospheric pressure
and temperature. A systematic set of freestream pitch and yaw angles were calculated for each probe geometry.
For simplicity all virtual sensor outputs were obtained for single node points.

Computational methods

The CFD domain is shown in Figure 9. A defined velocity vector is specified at the pressure-far-field inlet,
which is hemispherical with a radius of 8 probe diameters. The cylindrical exit plane is specified as a pressure
outlet and is located five probe diameters downstream of the leading edge. Unstructured meshes were generated
using ICEM. Prismatic surface layers were used on the probe face, with a y+ value of approximately unity on the
surface, an expansion ratio of 1.15 and 20 layers. The resulting meshes have around 1.5 million cells and further
refinements did not change the solutions (Morris, 2017). Reynolds-Averaged-Navier-Stokes (RANS) calculations
were performed with Fluent v16.0 using a coupled, pressure-based numerical approach.
There will be considerable laminar flow on the probe head at this Reynolds number (3010) which is challen-

ging to model. Laminar calculations typically suffer from convergence problems, while the available transition
models have not been sufficiently validated of for this type of flow. Therefore, fully turbulent flow was assumed
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using the kω-SST model. This approximation is not expected to significantly alter the surface streamline direc-
tions or pressure field on the probe head, which are largely determined by inviscid mechanisms.

Baseline probe: sensor location

The “baseline” probe geometry shown in Figure 5 has a face angle of 45° and a small leading-edge radius equal
to 2% of the probe diameter. The choice of location for the directional shear stress sensors requires a balance of
multiple considerations:

1. The magnitude of the local shear stress. Placing the sensors in regions of low shear will cause signal-to-noise
issues and should therefore be avoided. The predicted shear stress magnitude at zero pitch and yaw angle is
shown in Figure 10. Sensor locations in the low shear stress regions close to the leading edge are undesirable.

2. High sensitivity of the local flow direction to the freestream flow angles; since high sensitivity will improve the
accuracy of the probe.

3. Flow direction variations remain within a 90° range across the calibration map. This requirement enables the
use of the highest-frequency response sensors shown in Figure 3.

4. A valid calibration map can be generated over a large range of incidence angles, i.e. it is possible to calculate a
unique set of freestream angles given the local flow angles at the sensors. Pneumatic five-hole-probes typically
have valid calibration maps within a range of ±30° in yaw and pitch.

The shear stress angle (θ) at each location is referenced to its value at zero pitch and yaw incidence (θ0).
Figure 11 demonstrates how the sensor angles at locations 1 and 2 respond to isolated variations in yaw (a) and
pitch (b) angles, over a range of ±30°. For zero pitch angle, Figure 11a confirms that the two sensor angles move
together as the yaw angle is varied, as illustrated in Figure 6. Figure 11b shows that variations in pitch angle
cause the sensor angles to move in opposite directions, as in Figure 7. These sensor locations give a relatively
linear sensitivity in both cases.
Two simple calibration coefficients are defined for the probe. For yaw variations the two sensor angles tend to

move in unison and therefore a simple mean angle is used to define a Yaw Coefficient:

Πyaw ¼ ([θ � θ0]1 þ [θ � θ0]2)
2

(3)

where 1 and 2 indicate the two sensors. For pitch variations, the two sensor angles tend to move in opposing
directions and the difference is used to define a Pitch Coefficient:

Π pit ¼ ([θ � θ0]1 � [θ � θ0]2)
2

(4)

Figure 8. Computed surface streamlines and stagnation

point (yellow dot) on the face of a probe with 45° face

at different flow angles; view from upstream.

Figure 9. Cross-Section of the CFD Domain.
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These coefficients have been added to Figure 11 and can be seen to give almost linear response with freestream
angles.
Plots similar to Figure 11 can be generated for alternative sensor locations over the blade. To indicate the sen-

sitivity across the probe face, a least-squares linear fit is performed for each point:

(θ � θ0) � aϕþ b (5)

where a and b are constants; the slope a is a measure of the sensitivity:

sensitivity a � d (θ � θ0)
dϕ

(6)

Figure 12a and b present maps of the sensitivity a for yaw and pitch angles respectively. In line with require-
ment (3) above, regions where the sensor angles varied by more than 90° need to be avoided and have been col-
oured yellow in these plots. In general, these regions are close to the leading edge where small movements in the
stagnation point can lead to large changes in the flow direction. Over the remainder of the maps, the sensitivity
to yaw (Figure 12a) is relatively uniform, while pitch sensitivity can be maximised by moving the sensors out-
board towards the edge of the probe face (Figure 12b).
To examine the combined variation of pitch and yaw angles a virtual calibration map is presented in Figure 13

for the baseline probe with sensor locations 1 and 2 (Figure 12). The coefficients are presented in radians. The
map is presented as a “spider” map, with increments of 5° in pitch and yaw angle. Black lines of constant pitch

Figure 10. Shear Stress Magnitude on the baseline probe face at zero incidence.

Figure 11. Sensor Angle Variation: (a) yaw variation at zero pitch angle; (b) pitch variation at zero yaw angle. The cali-

bration coefficients from Equations 3 and 4 are included.
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angle and red lines of constant yaw angle are indicated on the plot, and the zero-incidence point is indicated by
the black dot in the centre of the map. The sensitivity of the probe is indicated by the rate of change in coefficients
as the flow angles vary. Over most of the range the probe gives a valid map and has a useable range of at least ±20°
in yaw and −20° to +30° in pitch. Outside this range, some folding of the map is evident for negative pitch angles
(<−20°) and extreme yaw angles, as indicated in the inset plot to the top left of the plot. In these folded regions
there is no unique set of flow angles for a given yaw and pitch coefficient and the calibration cannot be inverted.
The CFD solutions show that this behaviour corresponds with the movement of the stagnation point to the
outside face of the probe, causing separation over the leading edge. In addition to the folding at the extremes of
the map, there is an undesirable “pinching” of the −15° and −20° pitch lines at ±20° yaw, which will cause high
errors in this region (see Figure 21). It is noted that a more complicated approach to the calibration (e.g. using
machine learning algorithms) would likely extend the useful range of the probe, but the simple coefficients in
Equations 5 and 6 are sufficient for the current purpose of demonstrating the probe concept.

Figure 12. Maps of sensitivity a in Equation 5: (a) yaw sensitivity at zero pitch angle; (b) pitch sensitivity at zero yaw

angle. Yellow regions indicate a local flow angle range in excess of 90°.

Figure 13. Virtual calibration map for default sensor positions (1 and 2 in Figure 12); baseline probe.
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Figure 14 shows the impact of sensor location on the calibration map, by moving the sensors forwards, rear-
wards, inboard and outboard. The map from Figure 13 is reproduced in Figure 14c for reference. Only symmet-
ric movements of the two sensors are considered.
Moving the sensors forwards towards the leading-edge results in larger angle variation due to their proximity

to the stagnation point. As a result, the sensitivity increases causing the calibration map to spread out
(Figure 14b vs. c). However, these sensor locations are also close to the separation regions at extreme negative
pitch, causing a larger region of map folding and a reduction in the useable range. In a similar manner, moving
the sensors rearward (Figure 14d vs. c) reduces both the sensitivity and the map folding.
Moving the sensors outward on the probe face (Figure 14a vs. c) increases the pitch sensitivity, in line with

the increased sensitivity towards the top and bottom of the probe face in Figure 12. However, these probe loca-
tions are also more susceptible to map folding at extreme negative pitch angles. Similarly moving the sensors
inboard (Figure 14e vs. c) reduces the pitch sensitivity and reduces the map folding.
Clearly, the choice of sensor location requires a balance between the sensitivity and operating range. The cali-

bration maps in Figure 14 also highlight the issues of this probe at extreme negative pitch angles. It is shown
below that increasing the leading-edge radius can mitigate this problem and extend the operational range.

Probe face angle

Alternative probes with face angles of 60° and 30° were considered to observe the impact on the sensitivity.
Figure 15 presents the yaw sensitivity for each design; Figure 15b reproduces the result from Figure 12a for ease
of comparison. Again, the regions with flow angle variations greater than the range of the sensors (90°) have been
indicated by the yellow regions. The sharper leading edge of the 60° probe tends to give less movement of the
stagnation point. This effect is evident in Figure 15a which shows a larger usable area of the probe compared to
Figure 15b. For the 30° probe, the probe face is more normal to the incoming flow direction and the stagnation

Figure 14. The impact of shear stress sensor locations on the virtual calibration map; baseline probe.
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point moves over a wide area of the probe. As a result, most of the surface observes wide swings in angle and
therefore this design is not compatible with the sensors shown in Figure 3.
The increased face angle of the 60° probe tends to cause the flow to align more closely with the probe axis. As

a result, the pitch sensitivity for the 60° probe (Figure 16a) is slightly lower than for the 45° probe (Figure 16b).
Using the sensor locations 1 and 2 in Figures 16a and 17 shows the calibration map for the 60° probe.
Compared to the 45° probe (Figure 13), it can be seen that the pitch sensitivity is reduced and the map folding
at negative pitch angles is more pronounced, which is the result of a more severe separation from the sharper
leading edge. Based on this comparison, the 45° probe gives a wider operating range and better sensitivity and
was therefore selected for further investigation.

Leading edge radius

One limitation of the baseline 45° probe is the behaviour at large negative pitch angles, where leading edge separ-
ation affects the results. To mitigate this problem, the radius of the leading edge was progressively increased, as
shown in Figure 18. Calibration maps for the four edge radii are presented in Figure 19. A larger radius allows
the stagnation point to move smoothly around the leading edge and minimises separations. It can be seen that
the largest radius (Figure 19d) reduces the folding in the map at extreme negative pitch angles, extending the
usable range to ±30° in yaw and −20° to +30° in pitch for the largest radius (15% of diameter). This “final”
geometry was therefore selected for the experimental demonstrator. It is noted that further increases in radius are
hindered by the need to maintain a sufficient flat surface to mount the sensor chip (Figure 5).

Figure 15. Yaw Sensitivity (a in Equation 5) at zero pitch

angle for different probe face angles. Yellow regions

indicate a flow angle range >90°.

Figure 16. Pitch Sensitivity (a in Equation 5) at zero yaw

angle for different probe face angles. Yellow regions

indicate a flow angle range >90°.

Figure 17. Calibration map for the 60° face probe.
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Stagnation and dynamic pressure

The location of the two pressure transducers in Figure 5 is relatively straightforward. Figure 20a shows the vari-
ation in static pressure coefficient over the face of the final probe (0:15d leading edge radius) which is defined as:

Cp ¼ (Psurf � P)=(P0 � P) (7)

where Psurf is the static pressure on the probe surface; P and P0 are the freestream static and stagnation pressures
respectively. The plot in Figure 20a suggests that one transducer should be placed close to the stagnation point
at the face leading edge; the second should be situated further from the stagnation region so that it measures a
lower pressure. The compromise of transducer placements α and β allows for a single sensor chip to be used
(Figure 5).
The stagnation pressure coefficient is taken as:

Cp,0 ¼ (P0 � Pα)=(Pα � Pβ) (8)

where Pα and Pβ are the measured transducer pressures. The dynamic pressure coefficient is defined as:

Cp,dyn ¼ (P0 � P)=(Pα � Pβ) (9)

Figure 18. Edge radii as a fraction of probe diameter d: baseline is (a) and final design (d).

Figure 19. Calibration maps for varying leading edge radius; 45° probe, sensor locations 1 and 2 (Figure 12); range of

±30° in pitch and yaw.
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Figure 20b and c present contour maps of the two coefficients over a range of ±30° in yaw and pitch. The
stagnation pressure coefficient (Figure 20b) is close to zero at positive pitch angles, when the measured pressure
is close to stagnation. The dynamic pressure coefficient (Figure 20c) reaches a minimum at approximately zero
incidence, where the pressure difference between the two transducers is maximised. This trend is also visible in
Figure 20d and e, which present the two coefficients for isolated changes in yaw and pitch respectively. At −30°
pitch and extreme yaw angles the coefficients invert (Figure 20b and c) as the pressure on sensor β exceeds that
on sensor α. This behaviour could be usefully exploited as an out-of-range indicator for the final probe.

Accuracy estimation

An accuracy estimate of the probe can be obtained by making assumptions about the likely accuracy of the indi-
vidual sensors. Here a sensor angle sensitivity of 2σ ¼ +1� (the 95% confidence level) is assumed, which is rep-
resentative of sensor performance (e.g. De Luca et al., 2015b). Figure 21 presents the results of a Monte-Carlo
study assuming random noise in each sensor angle, which is passed back through the calibration map. Yaw and
pitch angle errors (95% confidence) are presented over the positive yaw range of the data. In general, the trends
are as expected, with lower errors in the regions of high sensitivity in the calibration map (Figure 18d). The
probe errors in yaw are lower than the sensor errors over most of the range, except for large values of yaw and
negative pitch. The pitch angle error shows a similar trend but is generally higher than for yaw, being comparable
to sensor error over much of the range.

Figure 20. Predicted stagnation (Cp,0, Equation 8) and dynamic (Cp,dyn, Equation 9) pressure coefficients with the

two transducer locations α and β; 45° probe with 0.15 d leading edge radius.
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Experimental demonstration

In order to provide a first demonstration of the probe concept, a steady calibration was performed using a
large-scale model. The test probe was constructed using 3D printing and has a diameter of 16 mm, which
allowed the use of existing MEMS sensors without the need to fabricate dedicated chips. The large scale also
facilitated the mounting of these sensors into the probe using the standard packaging techniques that were avail-
able. Figure 22 and Figure 23 show the CAD model and a photo of the probe head.

Measurements

Due to availability, shear stress sensors of the design shown in Figure 4 were used in the experiment. The rela-
tively low frequency response of these sensors is inconsequential for this steady demonstration.
A direct replication of the CFD yaw and pitch coefficients would require that each sensor is first independently

calibrated for angle and shear stress before the probe can be calibrated. By assuming each sensor has similar
thermoelectric properties, the Appendix shows that a good approximation to the shear stress angle can be
obtained directly from the sensor output voltage, thereby eliminating the need for a separate shear stress calibra-
tion (Equation 10). In practice for a real probe, any minor errors caused by making this assumption would be
eliminated by directly calibrating the “voltage angle” to the flow angle in a known flow, in much the same way
as a current pneumatic five-hole probe.

θv ¼ tan�1 E2
W � E2

E

E2
N � E2

S

� �
(10)

E indicates the thermopile output voltage from each sensor; their locations (North-South-East-West) are
shown in Figure 4. These virtual angles define the experimental yaw and pitch coefficients:

Π0
yaw ¼ [θv � θv�0]A þ [θv � θv�0]B

2
(11)

Π0
pit ¼

[θv � θv�0]A � [θv � θv�0]B
2

(12)

Figure 21. Estimated 95% confidence errors in Pitch and Yaw for sensor uncertainty of +1�.
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where θv�0 is the value of θv at zero pitch and yaw angle. The subscripts A and B indicate the two MEMS
sensor locations in Figure 23.
Measurements were performed in a calibration wind tunnel in the Whittle Laboratory, Cambridge at a velocity

of 57 m/s, corresponding to a probe Reynolds number of around 66,000. Pressures are measured using static
pressure tappings in the head of the probe, [C] in Figure 23, and were recorded using a Scannivalve DSA 3217
with a 10” H20 range, with an uncertainty of around 0.06% of dynamic head. Total and static pressure in the
calibration jet were measured with reference probes. Yaw and pitch angles of ±30° were tested in increments of
10°. A Keithly 2401 DAQ was used to measure sensor output voltages.

Angle sensitivity

Upon installation it was found that one of the MEMS sensors had been damaged and generated high levels of
noise. A calibration map was therefore reconstructed by taking data from the single working sensor and mirroring
it, effectively assuming perfect yaw symmetry of the set-up. The resultant calibration map is compared to the pre-
dicted map in Figure 24. In general, the probe behaves in a similar way to the predictions. The useable range of
the experimental map matches the computation and is valid for approximately ±30° in yaw and −20° to +30° in
pitch. The shape of the two maps is also generally similar, but the experimental pitch coefficient is generally
higher than the computed value. This effect is believed to indicate limitations in the quasi-angle assumption in
Equation 10. In any case, the final probe will use high-frequency response sensors as in Figure 3, which have dif-
ferent characteristics.

Stagnation and static pressure

The measured stagnation and dynamic pressure coefficients Cp,0 and Cp,dyn are shown in Figure 25. The trends
are similar to the CFD predictions in Figure 20; Figure 25(c) and (d) compares measurements and predictions

Figure 22. CAD model of the manufactured probe. Figure 23. Experimental Probe Head: MEMS shear stress

sensors (a, b – see Figure 4); static pressure tappings

(c); probe stem (d).

Figure 24. Comparison of Computed and Experimental Calibration maps. (Note the different coefficient definitions.)
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for isolated yaw and pitch variations. At −30° pitch and all yaw angles, the measured sensor pressures invert so
that Pα , Pβ and both pressure coefficients become negative. This behaviour was observed in the CFD for −30°
pitch and extreme (±30°) yaw angles in Figure 20b and c. As in the CFD, the pressure inversion occurs at flow
angles where the angle calibration map folds ((Figure 24b)). The inversion therefore gives an independent indica-
tion of extreme negative pitch angles and allows the user to know that the probe is operating in an invalid
portion of the map.

Conclusions

A successful concept demonstration of a novel MEMS-based aerodynamic probe has been performed. The probe
uses directional shear stress sensors on an angled face to determine the flow direction. The current configuration
is capable of measuring flow angles in a range of ±30° in yaw and −20°/+30° in pitch. By incorporating different
sensors onto the MEMS chip, the probe will be capable of measuring stagnation pressure, dynamic pressure and
temperature. The design can be miniaturised to around 1 mm diameter and should offer a step-change improve-
ment in temporal and spatial resolution compared to existing unsteady probes.
A computational study of the probe and sensor layout has given some insight into the design trade-offs.

Particular attention has been paid to the unusual method of flow angle measurement:

1. A 45° face angle gives a good compromise between sensitivity and operational range. A 30° face angle
improves sensitivity but the swings in local angle are beyond the sensing range of the shear stress sensors; a
60° face encourages leading edge separation at negative pitch angles and reduces the operational range.

2. Radiusing of the probe leading edge can extend the operating range of the probe by supressing separation at
negative pitch angles.

3. Moving the shear stress sensors forward on the probe face increases sensitivity but decreases the operational
range.

4. Moving the shear stress sensors outboard on the probe face increases the sensitivity to pitch angle but
decreases the operational range.

5. The pressure coefficients invert at extreme negative pitch angles where the angle map folds, thus warning of
out-of-range operation.

Future work will be required to further optimise the configuration, improve the calibration method, miniatur-
ise the device, assess measurement accuracy in more detail and characterise the frequency response of the probe.

Figure 25. Measured static pressure coefficients, analogous to the predictions in Figure 20.
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Nomenclature

CP Pressure Coefficient, Equation 7
CP ,0 Stagnation Pressure Coefficient, Equation 8
CP ,dyn Dynamic Pressure Coefficient, Equation 9
d Probe Stem Diameter
E Voltage
f Frequency
fr Reduced Frequency
P0 Freestream stagnation pressure
P Freestream static pressure
Psurf Surface static pressure
Pα, Pβ Transducer pressures
V Velocity
t Fluidic time constant
θ Sensor shear stress angle
θ0 θ at for pitch = 0, yaw = 0
θv Voltage-based quasi-shear-angle, Equation 10
Π pit Pitch Coefficient (CFD), Equation 4
Πyaw Yaw Coefficient (CFD), Equation 3
Π0

pit Experimental Pitch Coefficient, Equation 12
Π0

yaw Experimental Yaw Coefficient, Equation 11
τ Shear Stress
ϕ pit Freestream Pitch Angle
ϕyaw Freestream Yaw Angle
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Appendix: derivation of voltage angle for MEMS Sensors

The MEMS sensors used in the experiments are of the type shown in Figure 4. As described by De Luca et al. (2015b),
these devices include a heating element in the centre of a thin membrane. The thermopiles located around this element are
sensitive to the local temperature field, which depends on the shear stress magnitude and direction.
In the current set-up, four thermopiles were used: North (TPN1 in Figure 4), South (TPS1), East (TPE1) and West (TPW1).

De Luca et al. (2015a) showed that the outputs from these sensors can be calibrated for shear stress τ using the equation:

τ ¼ E2 � E2
0

A E2
0

� B
A

� �3

¼ B
A

� �3

1� E2 � E2
0

B E2
0

� �3

(13)

where A and B are constants, E is the thermopiles voltage and E0 is its value without any flow. The ratio (E2 � E2
0 )=BE

2
0 is much

less than unity (De Luca et al., 2015a), and therefore this equation can be approximated using polynomial expansion:

τ � B
A

� �3

1� 3
E2 � E2

0

B E2
0

� �
(14)
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The shear stress can thus be expressed in terms of constants C and D which incorporate the zero-flow voltage:

τ � CE2 þ D (15)

The shear stress angle can now be calculated by noting that the sensor outputs largely follow simple trigonometric rules
(De Luca et al., 2015b):

θv ¼ tan�1 (CW E2
W þ DW )� (CEE2

E þ DE )
(CNE2

N þ DN )� (CSE2
S þ DS)

� �
(16)

where each subscript relates to the sensor position (North-South-Eat-West). Finally if we assume that each thermopile has
similar calibration constants C and D, we obtain the “voltage angle” given in equation (10) in the main text:

θv ¼ tan�1 E2
W � E2

E

E2
N � E2

S

� �
(17)
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